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1 Introduction

In this paper we wish to show how some techniques based on a Sturm comparison theorem
for the differential equation associated with the Schwarzian derivative can be used to study
two problems. First, to estimate the quasisymmetry quotient of a function in terms of bounds
on its Schwarzian. Here, the bounds on the Schwarzian are much like those one finds in the
theory of univalent functions, and the result is a sufficient condition for a function to be
quasisymmetric. This is discussed in Section 3. Second, to study how much mappings of
an interval distort distances in the hyperbolic metric. These results are Schwarz-Pick type
lemmas and are discussed in Section 4. Apart from the differential equations arguments
there are interesting issues having to do with smoothness. In Section 5 we combine the
estimates for hyperbolic distances with those for quasisymmetry quotients to obtain a result
expressing a quasisymmetric function of the type we have been considering as a composition
of functions whose quasisymmetry quotients are arbitrarily close to 1. Finally, in Section
6 we construct some examples to show that there is no obvious necessary condition for a
function to be quasisymmetric corresponding to the sufficient conditions in Section 3.

We work with real valued functions of a real variable. Let f : I → R be an increas-
ing homeomorphism, where I is an open interval that may be the whole real line. The
quasisymmetry quotient of f is

kf(x, h) =
f(x + h)− f(x)

f(x)− f(x− h)
(1.1)

for x, x + h, x − h ∈ I. The function is called quasisymmetric if kf(x, h) is bounded below
away from zero and above away from ∞. Because of kf(x,−h) = kf(x, h)−1 we may assume
that h > 0 for this definition. One says that f is k−quasisymmetric, k ≥ 1, if

1

k
≤ kf(x, h) ≤ k.

A similarity is 1-quasisymmetric, and the functions f and g = af +b, a, b ∈ R, have kf = kg.
When f is monotonic and three times differentiable its Schwarzian derivative is

Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

=
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

. (1.2)
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We remind the reader of the chain rule for the Schwarzian,

S(f ◦ g) = (S(f) ◦ g)(g′)2 + Sg, (1.3)

and the fact that Sf is identically zero if and only if f is a Möbius transformation, f(x) =
(ax + b)/(cx + d).

If u is the solution to the initial value problem

u′′ +
1

2
pu = 0, u(0) = 1, u′(0) = 0, (1.4)

on an interval containing the origin, and

f(x) =
∫ x

0
u−2(t) dt ,

then Sf = p and f(0) = 0, f ′(0) = 1, f ′′(0) = 0. For brevity we say that a function f with
these values at the origin is normalized. This normalization, and the question of when a
function can or cannot be normalized, is important in our work. To explain a little more,
we can first achieve f(0) = 0 and f ′(0) = 1 using only affine transformations, which affect
neither the Schwarzian nor the quasisymmetry quotient of f . The further (parabolic) Möbius
transformation

f † = f/(1 + a2f), a2 = (1/2)f ′′(0)

will then obtain (f †)′′(0) = 0. We will be normalizing in this way very frequently, so we will
often use the dagger notation for the normalized function. However this last transformation,
which still does not affect the Schwarzian though it does change the quasisymmetry quotient,
will allow f † to become unbounded if there is a point x0 where f(x) tends to the value −1/a2

as x → x0. We treat this question in Section 2.
For applications to quasisymmetric functions, where in general no smoothness is required

beyond continuity, we would naturally like to relax the conditions needed on a function to
define its Schwarzian. For instance, by the Rademacher-Stepanov theorem, if f is of class
Cloc

2,1 then Sf is defined a.e. by the formula (1.2). While one would like to define a still
‘weaker’ Schwarzian, the class Cloc

2,1 does comes up in our work in two ways. First, for
the initial value problem (1.4) one can easily prove existence, uniqueness and the relevant
comparison theorem when the coefficient p is in Lloc

∞ , in which case the solution u will be Cloc
1,1

and f will be Cloc
2,1. This is done in Section 2; probably one can do better here. Second, and

to us more surprising, is that Cloc
2,1 is the degree of smoothness that is implied by controlling

the amount of distance distortion in the hyperbolic metric. This regularity result in turn
implies a compactness theorem in Cloc

2,1 for the space of functions whose Schwarzians are
bounded in the hyperbolic metric.

Here briefly is a summary statement of our main results, with more complete definitions,
statements, and additional results in the later sections. We let dJ(x, y) be the hyperbolic
distance between x and y in an interval J . For constants 0 < r ≤ 1, 1 ≤ s < ∞, Fr and Gs

are the normalized functions on I = (−1, 1) with

SFr(x) =
2(1− r2)

(1− x2)2
, SGs(x) =

−2(s2 − 1)

(1− x2)2
.
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These functions respectively decrease and increase the hyperbolic distance on I by the con-
stant factors of r and s. They are also extremals for bounding the Schwarzian and the
quasisymmetry quotient.

Theorem Let f :I → R be a non-constant, increasing function. Suppose there are numbers
0 < r ≤ 1 and 1 ≤ s < ∞ such that for every open subinterval J ⊆ I

dFr(J)(Fr(x), Fr(y)) ≤ df(J)(f(x), f(y)) ≤ dGs(J)(Gs(x), Gs(y)) (1.5)

for all x, y ∈ J . Then f ∈ Cloc
2,1(I) and

SGs ≤ Sf ≤ SFr a.e.. (1.6)

Conversely, if f ∈ Cloc
2,1(I) and (1.6) holds then so does (1.5). The set of normalized func-

tions satisfying either of these conditions is a compact family in Cloc
2,1(I) of k(r, s)−quasisym-

metric functions, with

k(r, s) =
s

r
max

{
21−r

2r − 1
,

2s − 1

21−s

}
.

The compactness here is in the topology of local uniform convergence of a sequence of
functions together with the sequences of first and second derivatives, and weak∗ convergence
of the third derivatives as elements of Lloc

∞ .

We remark that smooth quasisymmetric functions have not been of primary interest in
the subject, certainly as far as their relations to quasiconformal mappings and Teichmüller
theory go, where totally singular functions are the rule. However, the Schwarzian, expanding
and contracting maps, quasisymmetry, and questions of smoothness have also all played a
role in one-dimensional dynamics. See the important papers [4], [12] by de Melo-van Strien
and by Sullivan, to cite some recent work. For example, in [12] and [10] it is proved that
a map of an interval is locally bi-Lipschitz in the hyperbolic metric if and only if it is of
class C1+Zygmund. Also, in their paper [6] Gardiner and Sullivan study some cases when
their symmetric quasisymmetric functions are C1. Our interest in the Schwarzian has come
from univalent functions, and the present paper follows up on work in [2], [3]. Though the
amount of smoothness we require here may still not be satisfactory, the arguments seemed to
be worth developing. We feel this is so partly because the differential equations arguments
work so naturally and involve the explicit and interesting extremal functions, and partly
because we do not use quasiconformal extensions. For both of these reasons the estimates
are elementary and fairly precise.

We refer to the book by O. Lehto [9] for an excellent account of just about all of the
background material that is needed, as well as to the paper [3] for some of the results in
Section 2.
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2 Weak Schwarzians and Bounds on f from Sf

For the following discussion we suppose that functions are defined on the interval (−1, 1).
As mentioned above, if f ∈ Cloc

2,1(−1, 1) then Sf is defined a.e. and can be regarded as an
element of Lloc

∞ (−1, 1). A technical remark may be in order here. A function whose derivative
exists a.e. is not necessarily absolutely continuous of course, but a function with a ‘weak
derivative’, as in the theory of distributions, is. For functions in C2,1, f ′′ is absolutely
continuous and so f ′′′ is its weak derivative in whatever setting one is working. Thus there
is some justification for calling Sf a ‘weak Schwarzian’ when we start with f in Cloc

2,1. This
will come up in Section 4 where in one instance we are able to define Sf almost everywhere
for a C1 function with a log convex derivative.

To bring in the differential equation, we now have:

Theorem 1 Let p ∈ Lloc
∞ (−1, 1). There is a unique solution u ∈ Cloc

1,1(−1, 1) of

u′′ +
1

2
pu = 0 a.e., u(0) = 1, u′(0) = 0. (2.1)

If

f(x) =
∫ x

0
u−2(t) dt ,

then f ∈ Cloc
2,1(−1, 1), as long as u 6= 0, and Sf = p a.e..

This may be standard, but for completeness we sketch a proof based on a fixed point
method. We piece together solutions on small intervals, so we need to solve the equation
in a neighborhood of any point x0 with any initial conditions u(x0) = a, u′(x0) = b. Let
x0 ∈ (−1, 1) and for 0 < ε < 1, small, let J be the centered interval (x0 − ε, x0 + ε), which
we assume is compactly contained in (−1, 1). Let

X = {φ ∈ C1,1(J) : φ(x0) = 0, φ′(x0) = b},

and let T : X → X be defined by Tφ = ψ where

ψ′(x) = b− 1

2

∫ x

x0

(pφ)(s) ds− a

2

∫ x

x0

p(s) ds . (2.2)

X is a complete metric space with the usual norm on C1,1(J), and we claim that T is a
contraction provided ε is sufficiently small.

First, if Tφ1 = ψ1 and Tφ2 = ψ2 then ||ψ1
′ − ψ2

′||∞ ≤ (ε/2)||p||∞,J̄ ||φ1 − φ2||∞. Next,
since ψ1(x0) = ψ2(x0) = 0, this implies that ||ψ1 − ψ2||∞ ≤ (ε2/2)||p||∞,J̄ ||φ1 − φ2||∞ <
(ε/2)||p||∞,J̄ ||φ1 − φ2||∞. Finally, it also follows from the definition of T that the Lipschitz
constant for ψ1

′ − ψ2
′ is at most (ε/2)||p||∞,J̄ ||φ1 − φ2||∞. Hence

||ψ1 − ψ2||1,1 ≤ (3ε/2)||p||∞,J̄ ||φ1 − φ2||∞ ≤ (3ε/2)||p||∞,J̄ ||φ1 − φ2||1,1 .
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Therefore T has a unique fixed point if ε < 2/(3||p||∞,J̄). If φ is that fixed point then
u = a + φ is the solution to

u′′ +
1

2
pu = 0, u(x0) = a, u′(x0) = b

on J .
This solves the equation on small intervals with initial data at the center points. Starting

with an interval around zero with the initial conditions u(0) = 1, u′(0) = 0 we can piece
together a Cloc

1,1 solution on (−1, 1) by covering any given compact set with enough such
intervals so that adjacent overlapping intervals contain each others centers. (The estimates
for the size of the intervals, the ε′s, can be made uniform in terms of ||p||∞ on a slightly larger
compact set.) The remaining assertions in the statement of the Theorem are immediate.

The version of the Sturm comparison theorem that we need may be stated as follows.
We consider the two initial value problems

u′′ + pu = 0, a.e. u(0) = 1, u′(0) = 0, p ∈ Lloc
∞ [0, 1),

and
v′′ + qv = 0, a.e. v(0) = 1, v′(0) = 0, q ∈ Lloc

∞ [0, 1).

Suppose q ≥ p. By this we mean that the integral of q − p against smooth, non-negative
functions of compact support in (−1, 1) is non-negative. Then u ≥ v until the first zero of
v. The proof follows the classical case almost word for word. Consider w = uv′− vu′, which
is Lipschitz (locally), and then use that w′ = (p − q)uv is ≤ 0 as an element of Lloc

∞ [0, 1)
provided uv > 0 to get w decreasing.

After these generalities we now want to discuss the specific types of bounds and com-
parisons we will be using. The goal is to obtain bounds on a function from bounds on
its Schwarzian. All of our subsequent work is based on this. The results stated below are
from [3], where the notation was different and the setting was analytic functions in the disk.
Nothing is required here beyond the comparison theorem as stated above. In fact, working
with functions which are not analytic allows much more flexibility in constructing examples
based upon the differential equation, as we shall see in Section 6.

Let r and s be two constants with 0 < r ≤ 1 and 1 ≤ s < ∞. Define

Fr(x) =
1

r

(1 + x)r − (1− x)r

(1 + x)r + (1− x)r
, Gs(x) =

1

s

(1 + x)s − (1− x)s

(1 + x)s + (1− x)s
.

As a function of x the behavior is different when the parameter is less than or greater than
one, so we prefer to use two names for the function. Fr is concave up on (0, 1) and concave
down on (−1, 0) while the reverse is true for Gs. Fr and Gs are odd and are normalized at
the origin. They fit together alternately on (−1, 0] and [0, 1) to give C2 functions on (−1, 1)
that do not change concavity. To maintain the distinction between the two functions we
write the Schwarzians as

SFr(x) =
2(1− r2)

(1− x2)2
, SGs(x) =

−2(s2 − 1)

(1− x2)2
.
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Notice that with the Fr we have functions whose Schwarzians are positive but are always
less than 2/(1− x2)2, while with the Gs the Schwarzians can be as negative as we please.

These functions are ‘extremal’ for many of the problems we shall study. Here we stress
only the basic estimates that depend on the Schwarzian, and the question of normalizing.
Some of their other properties will be elaborated in Sections 3 and 4.

Suppose that f is a Cloc
2,1, increasing, normalized function on (−1, 1) whose Schwarzian

satisfies the bounds
SGs ≤ Sf ≤ SFr (2.3)

on (−1, 1). Again, when we write such an inequality between Lloc
∞ functions, which we will

be doing frequently, we mean for it to hold in the distributional sense, as we explained in
connection with Sturm comparison theorem. That theorem gives upper and lower bounds
for u = (f ′)−1/2 on [0, 1) in terms of v = (Fr

′)−1/2 and w = (Gs
′)−1/2 which lead to

Gs
′(x) ≤ f ′(x) ≤ Fr

′(x), (2.4)

Gs(x) ≤ f(x) ≤ Fr(x), (2.5)

for x ∈ [0, 1). For inequalities on (−1, 0] we define g(x) = −f(−x), which has Sg(x) =
Sf(−x), and apply the above bounds to g for x ≥ 0. Since Fr and Gs are odd one then finds
that (2.5) is replaced by

Fr(x) ≤ f(x) ≤ Gs(x), (2.6)

for x ∈ (−1, 0], while (2.4) continues to hold, as is, on (−1, 0]. Two consequences of (2.5)
and (2.6) that we will often use are

1/s ≤ f(1) ≤ 1/r , (2.7)

−1/r ≤ f(−1) ≤ −1/s . (2.8)

As for cases of equality we only need a fairly weak statement, that if f agrees with
one of the extremals Fr, Gs at an endpoint ±1 then it must agree with the corresponding
function on the half interval [0,±1]. This follows easily from integrating the inequalities on
the derivatives (Fr

′ and Gs
′ are integrable).

An interesting issue associated with these estimates is that of the normalization; when is
it possible to normalize and what happens if it is not possible? First, a normalized function
satisfying even just the upper bound

Sf ≤ SFr (2.9)

will be subject to
|f(x)| ≤ |Fr(x)| (2.10)

on all of (−1, 1), from (2.5) and (2.6) above. It will therefore be bounded on [−1, 1] by ±1/r.
Suppose f is not normalized but satisfies (2.9). As explained in the Introduction, we may
assume that f(0) = 0, f ′(0) = 1 and then normalize to get the second derivative to vanish
at the origin by defining

f † = f/(1 + a2f), a2 = (1/2)f ′′(0),
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at the expense of possibly introducing a singularity if there is a point x0 ∈ [−1, 1] where
f(x) tends to the value −1/a2 as x → x0. Now, f † also satisfies (2.9) and so it will satisfy
(2.10) on (−|x0|, |x0|). But since Fr(x) is bounded on [−1, 1], f † cannot become unbounded
as x → ±x0. We conclude that any f satisfying (2.9) can be normalized and will then be
subject to the bounds (2.10) on [−1, 1]. In fact, the argument shows that −1/a2 lies in the
complement of the closure of the range of f .

Finally, if f is normalized and satisfies the lower bound

SGs ≤ Sf, (2.11)

then f will satisfy
|Gs(x)| ≤ |f(x)| (2.12)

on (−1, 1). If f is not normalized but satisfies (2.11) then it may not be possible to normalize
further by defining f † without introducing a singularity. f † will satisfy (2.12) as far as it is
regular. In any case, a function with f(0) = 0, f ′(0) = 1, whose Schwarzian has this lower
bound will be subject to the coefficient inequality

|a2| ≤ s. (2.13)

This follows because even if f † is not regular on all of (−1, 1), its range will always cover the
interval (−1/s, 1/s), and f = f †/(1− a2f

†) is regular.

Remark 1 For later applications we also need versions of these estimates for functions on
an interval (−R,R), with the same normalization at the origin. The new extremals are

F̃r(x) = RFr(
x

R
), G̃s(x) = RGs(

x

R
),

with

SF̃r(x) =
2R2(1− r2)

(R2 − x2)2
, SG̃s(x) =

−2R2(s2 − 1)

(R2 − x2)2
.

If we replace (2.3) by
SG̃s ≤ Sf ≤ SF̃r (2.14)

for a normalized function f on (−R,R), then all the discussion above goes through with
F̃r and G̃s replacing Fr and Gs, respectively. For example, the inequalities (2.7), (2.8) are
replaced by

R/s ≤ f(R) ≤ R/r , (2.15)

−R/r ≤ f(−R) ≤ −R/s . (2.16)

The coefficient bound (2.13) is replaced by |a2| ≤ s/R.
We could also translate the origin and formulate the results for intervals centered at a

point x0; this amounts to a trivial change. It is not so easy to give clean statements when
the normalization is not at the center of the interval. This point comes up in Section 5.
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3 Sufficient Conditions for Quasisymmetry

The differential equation (1.4) for the Schwarzian and the estimates that come from it
are well suited to studying the quasisymmetry quotient. Consider the identity

kf(x, h) =
f(x + h)− f(x)

f(x)− f(x− h)
=

∫ x+h

x
exp

(∫ y

x

f ′′

f ′
(t) dt

)
dy

∫ x

x−h
exp

(∫ y

x

f ′′

f ′
(t) dt

)
dy

. (3.1)

Observe that the variable of integration y is greater than x on the top and less than x on
the bottom. Thus an upper bound for f ′′/f ′ will simultaneously bound the numerator from
above and the denominator from below. A lower bound for f ′′/f ′ will do the reverse. This
is the basis for the following Lemma.

Lemma 1 Suppose the Cloc
2,1 function f is normalized and satisfies SGs ≤ Sf ≤ SFr on

(−1, 1).
(i) If 0 ≤ x− h < x then

kGs(x, h) ≤ kf(x, h) ≤ kFr(x, h). (3.2)

(ii) If x < x + h ≤ 0 then

kFr(x, h) ≤ kf(x, h) ≤ kGs(x, h). (3.3)

(iii) If x− h < 0 ≤ x then

Gs(x + h)−Gs(x)

Gs(x)− Fr(x− h)
≤ kf(x, h) ≤ Fr(x + h)− Fr(x)

Fr(x)−Gs(x− h)
. (3.4)

(iv) If x ≤ 0 < x + h then

Gs(x + h)− Fr(x)

Fr(x)− Fr(x− h)
≤ kf(x, h) ≤ Fr(x + h)−Gs(x)

Gs(x)−Gs(x− h)
. (3.5)

Proof. As in Section 2, let u and v be the solutions of the initial value problems

u′′ +
1

2
(Sf)u = 0, u(0) = 1, u′(0) = 0, (3.6)

v′′ +
1

2
(SFr)v = 0, v(0) = 1, v′(0) = 0, (3.7)

where the first equation is meant to hold a.e.. Note first that

f ′′

f ′
= −2

u′

u
,

Fr
′′

Fr
′ = −2

v′

v
. (3.8)
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Using the differential equations and the right hand inequality in (3.2) we have

(u′v − uv′)′ =
1

2
(SFr − Sf)uv ≥ 0,

and hence u′v − uv′ ≥ 0 because of the initial conditions. In other words

−2
u′

u
≤ −2

v′

v
, on [0, 1), (3.9)

since u and v are positive. As promised, we can now conclude that

kf(x, h) =

∫ x+h

x
exp

(
−2

∫ y

x

u′

u
(t) dt

)
dy

∫ x

x−h
exp

(
−2

∫ y

x

u′

u
(t) dt

)
dy

≤

∫ x+h

x
exp

(
−2

∫ y

x

v′

v
(t) dt

)
dy

∫ x

x−h
exp

(
−2

∫ y

x

v′

v
(t) dt

)
dy

= kFr(x, h), (3.10)

as long as 0 ≤ x − h. This proves the right hand inequality in (3.2). For the left hand
inequality we let w be the solution to

w′′ +
1

2
(SGs)w = 0, w(0) = 1, w′(0) = 0, (3.11)

and we find, in the same manner as above, that

−2
u′

u
≥ −2

w′

w
, on [0, 1). (3.12)

This leads to the lower bound kf ≥ kGs in (3.5) and completes the proof of Part (i).
The inequalities in Part (ii) follow from those in (3.2) of Part (i). For y ∈ [0, 1) let

g(y) = −f(−y). Then g is increasing, normalized and Sg(y) = Sf(−y). Hence kGs(y, h) ≤
kg(y, h) ≤ kFr(y, h) when y−h ≥ 0. But now, it is easy to check that kg(y, h) = kf(−y, h)−1,
and also that kFr(y, h) = kFr(−y, h)−1 and kGs(y, h) = kGs(−y, h)−1, the latter two identi-
ties holding because Fr and Gs are odd. Flipping the inequalities, and the hypotheses, and
writing x for −y, we obtain (3.3).

For the proof of the inequalities (3.4) in Part (iii) we have to mix the estimates for u′/u
on either side of 0. We treat the numerator and denominator of (3.1) separately. To do this
we have available in addition to (3.9) and (3.12), and for the same reasons, the two bounds

−2
u′

u
≤ −2

w′

w
, on (−1, 0], (3.13)

and

−2
u′

u
≥ −2

v′

v
, on (−1, 0]. (3.14)
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Suppose that x− h < 0 ≤ x. Since x + h > x ≥ 0 we find from (3.9) that

f(x + h)− f(x) = f ′(x)
∫ x+h

x
exp

(
−2

∫ y

x

u′

u
(t) dt

)
dy

≤ f ′(x)
∫ x+h

x
exp

(
−2

∫ y

x

v′

v
(t) dt

)
dy

= f ′(x)v(x)2 {Fr(x + h)− Fr(x)} . (3.15)

Next, to estimate f(x)− f(x− h) from below we write

f(x)− f(x− h) =

f ′(x)

{∫ 0

x−h
exp

(
−2

∫ 0

x

u′

u
(t) dt− 2

∫ y

0

u′

u
(t) dt

)
dy +

∫ x

0
exp

(
−2

∫ y

x

u′

u
(t) dt

)
dy

}
.

In the first exponentiated integral we use (3.9), in the second we use (3.13), and in the third
we use (3.9). This, with v(0) = w(0) = 1 and Fr(0) = Gs(0) = 0, gives

f(x− h)− f(x) ≥ f ′(x)
{
v(x)2

∫ 0

x−h
w−2(y) dy + v(x)2

∫ x

0
v−2(y) dy

}

= f ′(x)v(x)2 {Fr(x)−Gs(x− h)} . (3.16)

Combining (3.15) with (3.16) we obtain

kf(x, h) ≤ Fr(x + h)− Fr(x)

Fr(x)−Gs(x− h)
.

The proof of the lower bound in (3.4) follows along the same lines. First, using (3.12) we
obtain the lower bound

f(x + h)− f(x) ≥ f ′(x)w(x)2{Gs(x + h)−Gs(x)}.
Next, splitting the integrals again in a way that makes it possible to apply (3.12), (3.14) and
(3.12) yields the upper bound

f(x)− f(x− h) ≤ f ′(x)w(x)2{Gs(x)− Fr(x− h)}.
Combining these gives the lower bound for kf(x, h) in (3.4).

This proves Part (iii) of the Lemma. Fortunately, we can deduce the inequalities (3.5) in
Part (iv), in the case when x ≤ 0 but x + h > 0, via the same trick we used in the proof of
Part (ii). That is, we can apply the inequalities in Part (iii) to the function g(y) = −f(−y).
Using as before the identity kg(y, h) = kf(−y, h)−1 and the fact that Fr and Gs are odd
leads quickly from (3.4) to (3.5). This completes the proof of Lemma 1.

There is an aspect of the proof of this Lemma which we will use in Section 4. Namely,
the comparison theorem gives locally uniform bounds for |f | and for f ′, with the latter being
bounded below away from zero. Hence from the bounds on f ′′/f ′ we obtain bounds for |f ′′|,
and then the bounds on the Schwarzian entail bounds in Lloc

∞ for f ′′′.
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It follows from the results in [2] on quasiconformal extensions that Fr and Gs are qua-
sisymmetric on (−1, 1). This is not obvious because F ′

r(x) = O((1 − x2)r−1), G′
s(x) =

O((1 − x2)s−1) as x → ±1. With some effort, using primarily the concavity, one can show
directly that Fr and Gs are k-quasisymmetric with

k =
21−r

2r − 1
for Fr, (3.17)

and

k =
2s − 1

21−s
for Gs. (3.18)

We will not give the details of the calculations. One may thus view Parts (i) and (ii) of
Lemma 1 as stating that a normalized map having the given bounds on its Schwarzian is
k−quasisymmetric on (−1, 0) and on (0, 1) with

k = max

{
21−r

2r − 1
,

2s − 1

21−s

}

for both intervals.
Having obtained the estimates for kFr and kGs in (3.17) and (3.18), it turns out to be

easier to write the inequalities (3.4), (3.5) in the second half of the Lemma in the form

Gs(x)−Gs(x− h)

Gs(x)− Fr(x− h)
kGs(x, h) ≤ kf(x, h) (3.19)

≤ kFr(x, h)
Fr(x)− Fr(x− h)

Fr(x)−Gs(x− h)
, (3.20)

for x− h < 0 ≤ x, and

Gs(x + h)− Fr(x)

Fr(x + h)− Fr(x)
kFr(x, h) ≤ kf(x, h) (3.21)

≤ kGs(x, h)
Fr(x + h)−Gs(x)

Gs(x + h)−Gs(x)
(3.22)

for x ≤ 0 < x + h, and to estimate the new quantities which appear. One can show that on
the right hand sides the new quantities tend to a maximum of s/r as (x, h) → (0, 1), and
that on the left they tend to a minimum of r/s as (x, h) tends to the same point. Again this
uses strongly the concavity of the individual functions and also the fact that Fr and Gs can
be pieced together to give smooth functions which do not change concavity at the origin.
Again, we omit the details.

We collect all these estimates together with Lemma 1 as a Theorem:

Theorem 2 Suppose the Cloc
2,1 function f is normalized and satisfies SGs ≤ Sf ≤ SFr on

(−1, 1). Then f is k(r, s)−quasisymmetric with

k(r, s) =
s

r
max

{
21−r

2r − 1
,

2s − 1

21−s

}
.

11



The particular value for k is not so important, but it is important that it tends to 1 as
r, s → 1. This fact also follows from the estimates in [2].

What happens if a function satisfies SGs ≤ Sf ≤ SFr but is not normalized? If f(1)
or f(−1) are infinite, which could happen, then kf can tend to zero or to infinity. We
study this problem in the following way. The quasisymmetry quotient is unaffected by affine
transformations of the function, so we may continue to assume at the outset that f(0) = 0
and f ′(0) = 1. As explained in Section 2, the upper bound Sf ≤ SFr allows us to normalize
further by defining f † = f/(1 + a2f), a2 = (1/2)f ′′(0). The quasisymmetry quotients of f
and f † are related by

kf †(x, h) =
1 + a2f(x− h)

1 + a2f(x + h)
kf(x, h) = qf(x, h)kf(x, h). (3.23)

Theorem 2 provides estimates for kf † and we want to estimate qf from above and below.
We give two ways of doing this. One is by making the assumption that f(−1) and f(1)
are bounded, and the other is by restricting the size of a2. The latter actually has that f
is bounded as a consequence. We recall from (2.13) in Section 2 that we always have the
coefficient estimate |a2| ≤ s when f satisfies the lower bound SGs ≤ Sf .

Lemma 2 Let f ∈ Cloc
2,1(−1, 1) satisfy SGs ≤ Sf ≤ Sfr with f(0) = 0, f ′(0) = 1.

(i) Suppose −∞ < a = f(−1) < 0 < f(1) = b < ∞, and let m = max{b/|a|, |a|/b}. Then

1

m

r

s
≤ qf ≤ s

r
m. (3.24)

(ii) If |a2| < r, then −∞ < a = f(−1) < 0 < f(1) = b < ∞, and

r − |a2|
r + |a2| ≤ qf ≤ r + |a2|

r − |a2| . (3.25)

Note that the bounds in Part (ii) tend to 1 as a2 → 0.

Proof. We prove Part (i) first, and we may suppose that a2 6= 0. Since f †(0) = f(0) = 0
and (f †)′(0) = f ′(0) = 1 it follows that f and f † have the same sign. Hence 1 + a2f(x) > 0
for all x. Write

qf =
f(x− h) +

1

a2

f(x + h) +
1

a2

.

From

a +
1

a2

≤ f(x) +
1

a2

≤ b +
1

a2

and

a +
1

a2

=
1

a2

(1 + a2f(−1)) > 0, if a2 > 0,

b +
1

a2

=
1

a2

(1 + a2f(1)) < 0, if a2 < 0,

12



we have

a +
1

a2

b +
1

a2

≤ qf ≤
b +

1

a2

a +
1

a2

, (3.26)

while if a2 < 0 then

b +
1

a2

a +
1

a2

≤ qf ≤
a +

1

a2

b +
1

a2

. (3.27)

Now write f = f †/(1− a2f
†) and

b +
1

a2

a +
1

a2

=
1− a2f

†(−1)

1− a2f †(1)
.

Then using the estimates for normalized functions (2.7), (2.8), that is, f †(−1) ≥ −1/r and
f †(1) ≥ 1/s, we have

1

1− a2f †(1)
=

b

f †(1)
≤ sb,

1− a2f
†(−1) =

f †(−1)

a
≤ −1

ar
.

Hence for a2 > 0
r

s

|a|
b
≤ qf ≤ s

r

b

|a| ,

while for a2 < 0 this is rearranged to

r

s

b

|a| ≤ qf ≤ s

r

|a|
b

.

Combining these yields (3.24).
The proof of (3.25) in Part (ii) relies on differential equations. Suppose 0 < |a2| < r.

Then the value 1/a2 is not attained by the function Fr, so that H = Fr/(1−a2Fr) is regular
on (−1, 1). In fact, if v is the solution of the initial value problem

v′′ +
(1− r2)

(1− x2)2
v = 0, v(0) = 1, v′(0) = −a2,

then v = (H ′)−1/2. We can apply the comparison theorem to conclude that if f satisfies
f(0) = 0, f ′(0) = 1, f ′′(0) = 2a2, and Sf(x) ≤ 2(1− r2)(1− x2)−2 then

|f(x)| ≤ |H(x)| =
∣∣∣∣∣

Fr(x)

1− a2Fr(x)

∣∣∣∣∣
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on (−1, 1). Hence

b = f(1) ≤ Fr(1)

1− a2Fr(1)
=

1

r − a2

,

a = f(−1) ≥ Fr(−1)

1− a2Fr(−1)
=

−1

r + a2

.

If again we treat separately the cases a2 > 0 and a2 < 0 then these last inequalities combined
with (3.26) and (3.27) lead to the inequalities in (3.25), and so completes the proof of the
Lemma.

We now see that we can drop the normalization hypothesis in Theorem 2 provided we
replace it by either assumption in Lemma 2, and modify the quasisymmetry constant ac-
cordingly.

Finally, readers familiar with the role of the Schwarzian in the theory of univalent func-
tions may wonder if there is a sufficient condition for quasisymmetry in terms of f ′′/f ′. We
raised this question for different reasons in [2], and we treat it here only briefly. There are
similarities to the situation with the Schwarzian, but there is also an interesting difference.

Let 0 ≤ t < 1 and let Lt and Mt be solutions of

Lt
′′

Lt
′ (x) =

2t

1− x2
and

Mt
′′

Mt
′ (x) =

−2t

1− x2

on (−1, 1), with Lt(0) = Mt(0) = 0 and Lt
′(0) = Mt

′(0) = 1. Then

Lt(x) =
∫ x

0

(
1 + y

1− y

)t

dy , Mt(x) =
∫ x

0

(
1− y

1 + y

)t

dy . (3.28)

These are the extremals for bounding f ′′/f ′ corresponding to Fr and Gs for the Schwarzian.
They are hypergeometric functions, so we lose the elementary nature of some of the estimates.
More importantly, for t ≥ 1, Lt(1) = +∞, Mt(−1) = −∞, and both Lt and Mt fail to be
quasisymmetric, whereas this did not happen with the lower extremal Gs for the Schwarzian.
(However, the failure of quasisymmetry here is a little more subtle. See Remark 3 at the end
of this Section.) Thus with f ′′/f ′, for all intents and purposes it makes sense to consider
only symmetric upper and lower bounds.

Theorem 3 If f satisfies ∣∣∣∣∣
f ′′

f ′
(x)

∣∣∣∣∣ ≤
2t

1− x2
(3.29)

on (−1, 1) for some 0 ≤ t < 1, then

kMt(x, h) ≤ kf(x, h) ≤ kLt(x, h)

for x, x− h, x + h ∈ (−1, 1), h > 0. For 0 ≤ t < 1, the function f is α(t)−quasisymmetric,
where α(t) = −Lt(1)/Lt(−1).

14



Actually, the proof will show that we can give the quasisymmetry bounds for kf in terms
of either extremal function. We did not make an issue of the smoothness of f , but in the
spirit of the earlier results Cloc

1,1 would suffice.

Proof. We may assume that f(0) = 0, f ′(0) = 1. First, it follows easily that f ′(x) =
O((1− x)−t) as x → 1, hence f(1) < ∞. Similarly f(−1) > −∞. Now write

f ′′

f ′
(x) =

2tg(x)

1− x2
,

where |g(x)| ≤ 1. Next, we write the quasisymmetry quotient as

kf(x, h) =

∫ x+h

x
exp

(
2t

∫ y

x

g(τ)

1− τ 2
dτ

)
dy

∫ x

x−h
exp

(
2t

∫ y

x

g(τ)

1− τ 2
dτ

)
dy

. (3.30)

The choice g = 1 both maximizes the numerator and minimizes the denominator. Hence,
using (3.28),

kf(x, h) ≤

∫ x+h

x
exp

(
2t

∫ y

x

1

1− τ 2
dτ

)
dy

∫ x

x−h
exp

(
2t

∫ y

x

1

1− τ 2
dτ

)
dy

=

∫ x+h

x

(
1 + y

1− y

)t

dy

∫ x

x−h

(
1 + y

1− y

)t

dy

= kLt(x, h) .

Likewise, if we choose g = −1 in (3.30) then we obtain

kMt(x, h) ≤ kf(x, h).

This proves the first part of the Theorem.
We now want to estimate kMt(x, h) and kLt(x, h). Suppose first that x ≥ 0. Because Lt

is concave up, kLt(x, h) ≤ kLt(x, 1− x), and with some work we find that

max
0≤x≤1

kLt(x, 1− x) =
Lt(1)− Lt(0)

Lt(0)− Lt(−1)
= − Lt(1)

Lt(−1)
= α(t) < ∞

for all 0 ≤ t < 1. Similarly, because Mt is concave down, kMt(x, h) ≥ kMt(x, 1 − x) for
0 ≤ x ≤ 1, and here the result is

min
0≤x≤1

kMt(x, 1− x) =
Mt(1)−Mt(0)

Mt(0)−Mt(−1)
= − Mt(1)

Mt(−1)
= β(t) > 0 .

Thus for 0 ≤ x < 1
β(t) ≤ kf(x, h) ≤ α(t).

To get bounds for kf(x, h) when x < 0 we employ the familiar trick of considering the
function g(x) = −f(−x) and applying what has already been proved. This leads to

1

α(t)
≤ kf(x, h) ≤ 1

β(t)
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for −1 < x < 0. Therefore, for all x, h

min{β(t),
1

α(t)
} ≤ kf(x, h) ≤ max{α(t),

1

β(t)
}.

But from (3.28), α(t) = 1/β(t), whence

1

α(t)
≤ kf(x, h) ≤ α(t)

as desired. Note that α(t) = ∞ for t ≥ 1 so, as we remarked earlier, both Lt and Mt fail to
be quasisymmetric in this range.

Remark 2 We also need versions of results in this Section for functions on the interval
(−R, R). We also recall Remark 1 in Section 2. In Lemma 1 we need only replace Fr and
Gs by F̃r and G̃s for the statement and the proof to remain otherwise unchanged. More
importantly, the bounds for kF̃r and kG̃s are the same as for kFr and kGs in (3.17) and
(3.18). The same is true for the estimates of the mixed quantities in (3.19)–(3.22). That
is, the bound for the quasisymmetry quotient in Theorem 2 will be the same for normalized
maps on (−R, R) satisfying SG̃s ≤ Sf ≤ SF̃r.

The situation in Lemma 2 is a little different. Again we replace Fr and Gs by F̃r and G̃s.
With a = f(−R) < 0 < f(R) = b the statement in (3.24) is unchanged. For the second part
of the Lemma we make the assumption that |a2| ≤ r/R (a corresponding strengthening of
the estimate |a2| ≤ s/R). Then (3.25) is replaced by

r − |a2|R
r + |a2|R ≤ qf ≤ r + |a2|R

r − |a2|R. (3.31)

Remark 3 It is possible to refine the differential equations arguments we have used to obtain
the following result, whose proof we will not give here.

Theorem Suppose that f ∈ Cloc
2,1(−1, 1) satisfies

−∞ < lim inf
|x|→1

(1− x2)2Sf(x) and lim sup
|x|→1

(1− x2)2Sf(x) < 2.

Then either f(1) = −f(−1) = ∞ or else some Möbius transformation of f is quasisymmetric
on (−1, 1).

(The Schwarzian is in Lloc
∞ so the hypotheses have to be interpreted in the distributional

sense. For instance, to say that the lim sup as x → 1 is < 2 means that there exist x0 and
b < 2 such that (1− x2)2Sf(x) ≤ b on [x0, 1) in the distributional sense.)

This is analogous to a theorem of Gehring and Pommerenke [7] on univalent functions
with a quasiconformal extension. It has an interesting consequence for the extremal functions
Lt and Mt used to bound f ′′/f ′. Taking Lt, for example, we compute that

SLt(x) =
4tx− 2t2

(1− x2)2
.
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Hence the limits of (1− x2)2SLt(x) as x → ±1 are −4t− 2t2 at −1, and 4t− 2t2 at 1, thus
> −∞ in either case. The limit at −1 is ≤ 0 and the limit at 1 is < 2 if t > 1. Since Lt maps
only the endpoint +1 to infinity we see from the Theorem above that when t > 1 some Möbius
transformation of Lt will be quasisymmetric. A similar discussion holds for Mt, getting the
same limits but at the opposite endpoints. So for t > 1 the failure of quasisymmetry of the
extremals Lt, Mt can be eliminated via a Möbius transformation. The catch is that, unlike
the Schwarzian, the expression f ′′/f ′ is not invariant under general Möbius transformations.
On the other hand, for t = 1, L1(x) = log(1 − x)−2 + x, M1(x) = log(1 + x)2 − x, and no
Möbius transformation will make these functions quasisymmetric on (−1, 1).

Remark 4 The quasisymmetry quotient determines a function up to a similarity. For
suppose kf = kg. We may first apply similarity transformations to obtain f(0) = g(0) = 0
and f(1) = g(1) = 1, and then it is easy to show that f = g at dyadic points. This implies
f = g under only the assumption of continuity. If we allow for some differentiability the
same uniqueness statement follows quite differently from

(
∂

∂h
kf)(x, 0) =

f ′′

f ′
(x). (3.32)

This equation also allows one to represent f directly in terms of its quasisymmetry quotient,
though not in a particularly interesting way.

A problem which we do not address, but which has been in the background of much
of our work, is the corresponding question of existence. To what extent can one prescribe
the quasisymmetric distortion, not just the bounds, but the positive, bounded function that
measures the distortion at each point and at each scale? Allowing again for some differ-
entiability, there are several other interesting identities which the quasisymmetry quotient
must satisfy, and which might cast some shadow as necessary and sufficient conditions for
an existence theorem for continuous quasisymmetric functions. For example, one also has

(∆kf)(x, 0) =

(
f ′′

f ′
(x)

)2

.

A trivial consequence (for smooth maps, at least) is that kf is harmonic if and only if f is
a similarity.

One can also get the Schwarzian derivative out of the quasisymmetry quotient. If we
change coordinates to u = x + h and v = x− h then

(
∂2

∂v2kf)(u, u) = −1

2
Sf(u).

Unfortunately we have not been able to make much use of these and other similar identities.

4 Schwarz-Pick Lemmas and C2,1 Smoothness

Let J be an interval (a, b). By analogy with a two dimensional disk we define

λJ(t)dt =
(b− a)dt

2(b− t)(t− a)
(4.1)
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to be the Poincaré metric for J , and

dJ(x, y) =
∣∣∣∣
∫ y

x
λJ(t) dt

∣∣∣∣ =

∣∣∣∣∣log
(y − a)(b− x)

(x− a)(b− y)

∣∣∣∣∣ (4.2)

to be the corresponding hyperbolic distance. For the Poincaré metric, λJ(t) is the arithmetic
mean of the reciprocals of the distances from t to the endpoints, while it is often helpful to
view the distance dJ(x, y) as the logarithm of a cross-ratio. For instance the invariance of
the hyperbolic distance under Möbius transformations is a visible consequence of the latter.
We discuss this briefly at the end of this Section.

If J is the centered interval (x0 − h, x0 + h) then the hyperbolic metric takes the form

λJ(x)dx =
h dx

h2 − (x− x0)2
. (4.3)

Now let f be an increasing function. We compare the Poincaré metrics on (x0 − h, x0 + h)
and (f(x0 − h), f(x0 + h)) and find that whenever Sf(x0) exists we can write

λf(J)(f(x0))f
′(x0)

λJ(x0)
= 1− 1

6
Sf(x0)h

2 + o(h2). (4.4)

For C4 functions the next non-zero term would be O(h4) because the left hand side is ac-
tually even in h. Infinitesimally, a function with a negative Schwarzian therefore increases
hyperbolic distances, while a function with a positive Schwarzian decreases hyperbolic dis-
tances. This phenomenon on a global scale, much discussed in dynamics, is the subject of
this Section, and the extremal functions Fr and Gs are the models.

Let I be the interval (−1, 1). The Möbius transformation P (x) = (1 + x)/(1 − x) is
an isometry of (I, λIdx) and the positive half-line R+ with its Poincaré metric λR+(x)dx =
dx/2x. For any α > 0 the map y = xα is a smooth, incereasing map of R+ to itself with
dy/2y = α(dx/2x). It decreases or increases hyperbolic distances on R+ when α < 1 or
α > 1, respectively. Now set φ(x) = (1/α)(P−1(P (x)α)). Then Fr(x) and Gs(x) are φ(x) for
α = r and s, respectively. Furthermore, the extremals have the stronger property of being
distance decreasing, or increasing, on all subintervals, though not by a constant amount as
they do for the whole interval. That is, if J ⊆ (−1, 1) is any open subinterval then

dFr(J)(Fr(x), Fr(y)) ≤ dJ(x, y), dJ(x, y) ≤ dGs(J)(Gs(x), Gs(y)).

This can be checked directly, but it also has to do precisely with the Schwarzians being of
one sign.

We will have to talk about functions which are increasing or decreasing in the ordinary
sense along with functions which increase or decrease hyperbolic distances. To keep this
straight with as few words as possible, we will refer to the latter properties as expanding or
contracting. Observe that if f is contracting then f−1 is expanding on the range of f , and
vice-versa.

We start with some Schwarz-Pick type inequalities, in an infinitesimal form, under the
assumption that the function is Cloc

2,1.

18



Lemma 3 Let I = (−1, 1) and let f : I → R be an increasing Cloc
2,1 function. Let J ⊆ I be

an open interval in I.

(a) If SGs ≤ S ≤ SFr then

rλI(x) ≤ λf(I)(f(x))f ′(x) ≤ sλI(x), x ∈ I. (4.5)

Equality at a single point in either inequality in (4.5) implies that f is a Möbius conjugation
of the corresponding extremal Fr or Gs.

(b) Sf ≤ 0 on I if and only if λJ(x) ≤ λf(J)(f(x))f ′(x), x ∈ J , for all J . If equality holds
at a single point in the latter inequality then f is a Möbius transformation on J .

(c) Sf ≥ 0 on I if and only if λf(J)(f(x))f ′(x) ≤ λJ(x), x ∈ J , for all J . If equality holds
at a single point in the latter inequality then f is a Möbius transformation on J .

The fact that functions with a positive (negative) Schwarzian are contracting (expanding)
in the hyperbolic metric is due to de Melo and van Strien [4] using cross-ratio. We thought
it was worthwhile to give a different proof in the present context, especially because the
differential equations argument we use also gives the case of equality.

Proof. For Part (a) we first show that

r ≤ λf(I)(f(0))f ′(0) ≤ s. (4.6)

As always, we may assume that f(0) = 0, f ′(0) = 1 without changing (4.6) and we may
further normalize to the function f † = f/(1+a2f), with a2 = (1/2)f ′′(0), without introducing
any singularities. Since Möbius transformations are hyperbolic isometries it then suffices to
show that

r ≤ λf†(I)(0) ≤ s (4.7)

in order to deduce (4.6).
Let f †(−1) = a < 0 < f †(1) = b. Then from (4.3) we get

λf†(I)(0) =
b− a

−2ab
=

1

2

(
1

b
− 1

a

)
. (4.8)

The inequalities (2.7) and (2.8) now give

−1

r
≤ a ≤ −1

s
,

1

s
≤ b ≤ 1

r
,

from which we obtain (4.7). If equality holds in (4.7) in either inequality this forces both a
and b to have the corresponding extreme value. This implies that f † is the same extremal
function on each interval (−1, 0], [0, 1).

The general result (4.5) at a point x0 ∈ (−1, 1) follows by considering y = (x + x0)/(1 +
x0x) and h(x) = f(y). Then (1−x2)2Sh(x) = (1− y2)2Sf(y). Therefore r ≤ λh(I)(0)g′(0) ≤
s, while also

λh(I)(h(0))h′(0) = λh(I)(f(x0))f
′(x0)(1− x0

2) = λf(I)(f(x0))f
′(x0)(1− x0

2).
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The case of equality stated in Part (a) also follows, since if equality holds in (4.5) at some
point x0 we can precompose f with a Möbius transformation of the interval to itself to
assume that the point is 0, and then apply the previous argument.

To prove Part (b) we first show that if Sf ≤ 0 on I then

λI(x) ≤ λf(I)(f(x))f ′(x), x ∈ I.

Because the Schwarzian is negative we can define f †, as above, without introducing a sin-
gularity. As in Part (a) it is then enough to show that 1 ≤ λf†(I)(0), where λf†(I)(0) is
given by (4.8). This follows from (2.10) with r = 1, according to which a ≥ −1 and b ≤ 1.
Furthermore λf†(I)(0) = 1 if and only if b = −a = 1, which can only happen if f † is the
identity, hence f is Möbius. We get the expanding property on a subinterval J , and also the
case of equality, by considering f ◦ ϕ, where ϕ is an affine map of I to J . This proves the
sufficiency in Part (b). The necessity follows from (4.4).

Part (c) follows easily from Part (b) by considering f−1. It is also possible to give a
direct proof along the lines of Part (b), with the complication that when Sf is only bounded
below one cannot normalize without possibly introducing a singularity. Thus it is necessary
to distinguish a number of cases, and we will not give this version of the proof.

We have one further comment about Parts (b) and (c). Though we have not been able
to formulate a general statement, it seems that the property of a function being contracting
or expanding has to do with the Schwarzian being ‘mostly’ of one sign on an interval. For
example, the function f(x) = x3 + x has Sf(x) = 6(1 − 6x2)/(1 + 3x2)2, hence Sf(x) ≥ 0
if and only if x2 ≤ 1/6. So for certain f is contracting as a map from J to f(J) where J is
any subinterval of (−1/

√
6, 1/

√
6). However, one can check that f is still contracting as a

map from (−1/2, 1/2) to (−5/8, 5/8) (f(1/2) = 5/8), though it will be expanding on small
intervals contained in (−1/2, 1/2) near the endpoints since the Schwarzian will be negative
between ±1/

√
6 and ±1/2.

Corollary 1 Let f :I → R be an increasing Cloc
2,1 function. Then SGs ≤ Sf ≤ SFr on I if

and only if

λFr(J)(Fr(x))Fr
′(x) ≤ λf(J)(f(x))f ′(x) ≤ λGs(J)(Gs(x))Gs

′(x), (4.9)

x ∈ J , for all open subintervals J ⊆ I. If equality holds at a single point in either inequality
in (4.9) then f is the corresponding extremal function on J up to a Möbius transformation
of J .

This follows from Parts (b) and (c) of the Lemma via the chain rule for the Schwarzian
(1.3) applied to the compositions fFr

−1 and fGs
−1.

We next have two Lemmas implying degrees of smoothness of functions on (−1, 1) when
the change in hyperbolic distance is controlled. In the first we ask that the function be
contracting in the same strong sense as the extremal Fr, i.e., that it be contracting on
all subintervals. In the second, it is the version of (4.9) for hyperbolic distances, not the
infinitessimal statement in terms of the metric, that is the key to proving C2,1 smoothness.
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Lemma 4 Let f :I → R be an increasing function. Suppose that for every open subinterval
J ⊆ I

df(J)(f(x), f(y)) ≤ dJ(x, y) (4.10)

for all x, y ∈ J . Then f is C1 on I. If f ′(x) = 0 for any x then f is constant, otherwise f ′

is never zero and log f ′ is a convex function.

Proof. It is easy to see that f is continuous on I. We show that it is differentiable there.
Let −1 < a < x < b < 1 and let J = (a, b). From (4.2), given ε > 0 there is a δ > 0 such
that

dJ(x, y) ≤ (1 + ε)λJ(x)|x− y|,
and

df(J)(f(x), f(y)) ≥ (1− ε)λf(J)(f(x))|f(x)− f(y)|,
provided |x− y| < δ. This yields the following upper bound for the difference quotient at x:

∣∣∣∣∣
f(x)− f(y)

x− y

∣∣∣∣∣ ≤
1 + ε

1− ε

b− a

f(b)− f(x)

f(b)− f(x)

b− x

f(x)− f(a)

x− a
.

Taking the lim sup as y → x and then letting ε → 0 we conclude that

D+f(x) ≤ b− a

f(b)− f(a)

f(b)− f(x)

b− x

f(x)− f(a)

x− a
. (4.11)

Now fix a and x and let b → x from the right along any sequence. Then (4.11) implies
together with the continuity of f that

D+f(x) ≤ lim inf
b→x+

f(b)− f(x)

b− x
.

Similarly,

D+f(x) ≤ lim inf
a→x−

f(x)− f(a)

x− a
.

It follows that all the limits are the same and hence that f ′(x) exists. Thus (4.11) holds
with f ′(x) in place of D+f(x).

Next, writing down the hyperbolic distances from (4.2), the condition (4.10) with a <
x < y < b is

f(b)− f(x)

f(b)− f(y)

f(y)− f(a)

f(x)− f(a)
≤ b− x

b− y

y − a

x− a
, (4.12)

which we rewrite as

f(b)− f(y)

b− y

f(x)− f(a)

x− a
≥ f(b)− f(x)

b− x

f(y)− f(a)

y − a
.

Knowing that f is differentiable we can let x → a, y → b to obtain

f ′(b)f ′(a) ≥
(

f(b)− f(a)

b− a

)2

. (4.13)
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The inequalities (4.13) and (4.11) for f ′ together show that f is C1, lower semicontinuity
following from the former and upper semicontinuity from the latter. Equality in (4.13) for
all a, b characterizes Möbius tranformations. Also from (4.13), if f ′(x0) = 0 at any point x0

then f is constant, so we now assume that f ′ > 0.
We next show that log f ′ is convex. Taking the logarithm in (4.13) we get

1

2
(log f ′(b) + log f ′(a)) ≥ log

f(b)− f(a)

b− a
,

and so we need to verify that

log
f(b)− f(a)

b− a
≥ log f ′

(
a + b

2

)
.

But from (4.11)

f ′
(

a + b

2

)
≤ b− a

f(b)− f(a)

f(b)− f

(
a + b

2

)

b− a

2

f

(
a + b

2

)
− f(a)

b− a

2

,

and we bound the right hand side from above by exactly (f(b)− f(a))/(b− a) on applying
the inequality between the arithmetic and geometric means to the numerators of the last
two factors. This completes the proof.

Corollary 2 If f satisfies the hypotheses of Lemma 4 and is not constant, then Sf exists
as a locally L1 function and Sf(x) ≥ 0 wherever it is defined.

Proof. According to Lemma 4 log f ′ is convex. From general facts on convex functions (see,
for example [5]) one knows that (log f ′)′ = f ′′/f ′ will be an increasing function with at most
a countable number of jump discontinuities. By Lebesgue’s theorem (f ′′/f ′)′ exists a.e. in
I and is measurable, and so the same goes for Sf . It follows from the distance decreasing
property and (4.4) that Sf(x0) ≥ 0 at a point x0 where it exists. Sf is locally integrable
because ∫ y

x

(
f ′′

f ′

)′
(t) dt ≤ f ′′

f ′
(y)− f ′′

f ′
(x) . (4.14)

This proves the Corollary, but we have a few additional comments. See Remark 7 at the end
of this Section.

Next, we find that the smoothness improves if along with a function being contracting we
ask that the amount by which it contracts be regulated from below by the extremal function
Fr.

Lemma 5 Let f :I → R be a non-constant, increasing function. Suppose there is a number
0 < r ≤ 1 such that for every open subinterval J ⊆ I

dFr(J)(Fr(x), Fr(y)) ≤ df(J)(f(x), f(y)) ≤ dJ(x, y) (4.15)

for all x, y ∈ J . Then f ∈ Cloc
2,1(I) and Sf ≥ 0.
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The heart of the proof is to manipulate f by composing it with the extremals or their
inverses. We can do this most easily, without worrying about domains, if we rescale the
extremals to rFr and sGs so that they map (−1, 1) onto itself. This affects neither the
Schwarzian nor any hyperbolic distances. There are some other advantages to this, for if we
write

Φα(x) = P−1(P (x)α) with Px =
1 + x

1− x
(4.16)

as we did to see the expanding and contracting properties of Fr and Gs, then we easily find
that

ΦαΦβ = Φαβ. (4.17)

Thus for α > 0 the {Φα} form a one-parameter group of mappings of I onto itself.

Proof. By Lemma 4 log f ′ is a convex function. We reiterate that f ′′/f ′ is therefore a
continuous, increasing function in the complement of a countable set in I, and at points in
this countable set log f ′ has a left hand and right hand derivative with the former being
smaller than the latter. At a jump of f ′′/f ′ the left-hand limit is equal to the left-hand
derivative of log f ′ and similarly from the right side.

Let x0 be a point where f ′′/f ′ has a presumed jump discontinuity. Without loss of
generality we may assume that x0 = 0. Furthermore, since the hypotheses are unaffected by
a compositon Tf with a Möbius transformation we may ‘partially normalize’ f and assume
that f(0) = 0, f ′(0) = 1 and that the left hand derivative D(log f ′)(0−) = 0. Then the
right hand derivative D(log f ′)(0+) will be non-negative. This may introduce a singularity
somewhere in the interval, but we will be working only in a neighborhood of the origin. To
show that a jump in the second derivative cannot occur we bound the change in f ′′/f ′ at
points on either side of the origin.

We now bring in the rescaled extremals (4.16), Φr = rFr, Φs = sGs. The hypothesis is
the same with Φr in place of Fr. We form fΦr

−1 = fΦs, s = 1/r, which is a hyperbolically
expanding function. Consider also Φ2(x) = 2x/(1 + x2). One easily checks that Φ2

′′/Φ2
′ is

decresing on I, and because Φ2
′′(0) = 0 we have

Φ2
′′

Φ2
′ (y) ≤ 0 ≤ Φ2

′′

Φ2
′ (x) (4.18)

when x ≤ 0 ≤ y. The function f̃ = fΦ2s is more expanding than Φs, and we want to show
that the property (4.18) of Φ2

′′/Φ2
′ is also shared by f̃ ′′/f̃ ′, wherever it exists, at least near

the origin.
For this, write Φ2 = hf̃ , where h = Φs

−1f−1 = Φrf
−1. Then h is contracting and

log Φ2
′ = (log h′) ◦ f̃ + log f̃ ′. (4.19)

Since the extremals have zero second derivative at the origin, it follows from (4.19) that the
left hand derivative of log h′ at x = 0 is 0, and because h is contracting, we conclude again
from Lemma 3 that, wherever it exists,

h′′

h′
(x) ≤ 0 ≤ h′′

h′
(y), (4.20)
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for x ≤ 0 ≤ y near zero, opposite to (4.18). But (4.18), (4.19) and (4.20), along with the
fact that f̃ is increasing and f̃(0) = 0, are exactly what we need to conclude that, whenever
it exists,

f̃ ′′

f̃ ′
(y) ≤ 0 ≤ f̃ ′′

f̃ ′
(x), (4.21)

when x ≤ 0 ≤ y are near zero.
We get bounds for the change in f ′′/f ′ on either side of zero directly from this. First,

f̃ ′′

f̃ ′
=

(
f ′′

f ′
◦ Φ2s

)
Φ′

2s +
Φ′′

2s

Φ′
2s

wherever f ′′/f ′ exists. Thus (4.21) implies

0 ≤ f ′′

f ′
(Φ2s(y))Φ′

2s(y)− f ′′

f ′
(Φ2s(x))Φ′

2s(x) ≤ Φ′′
2s

Φ′
2s

(x)− Φ′′
2s

Φ′
2s

(y), (4.22)

for x ≤ 0 ≤ y near zero, wherever f ′′/f ′ exists. The intermediate map Φ2s is smooth, so
(4.22) shows that in fact no jump can occur in f ′′/f ′ at 0. Thus f ′′/f ′ exists and is continuous
at 0. Furthermore, (4.22) also shows that the difference quotient of f ′′/f ′′ at 0 is bounded
by (Φ′′

2s/Φ
′
2s)

′(0).
Finally, an increasing function with bounded difference quotient at each point of an

interval must be Lipschitz on compact subsets. Hence f ∈ Cloc
2,1(I). We now know that

Sf(x) exists a.e. in I. The fact that Sf ≥ 0 again follows from (4.4) using the fact that f
is contracting on every subinterval. This completes the proof.

Corollary 3 Let f : I → R be a non-constant, increasing function. Suppose there is a
number 1 ≤ s < ∞ such that for every open subinterval J ⊆ I

dJ(x, y) ≤ df(J)(f(x), f(y)) ≤ dJ(Gs(x), Gs(y)) (4.23)

for all x, y ∈ J . Then f ∈ Cloc
2,1(I) and Sf ≤ 0.

The smoothness assertion follows from the preceding Lemma by considering fGs
−1; if we

rescale, then Gs
−1 is an Fr. The Schwarzian is negative this time because f is expanding on

each subinterval.
Incidentally, the function Φ2(x) = 2x/(1 + x2) in the proof of Lemma 4 is (aside from

the factor 2) the Koebe function x/(1−x)2 normalized to have second derivative zero at the
origin. Other extremals with negative Schwarzian, s > 1, would work to get the property
(4.18) near the origin, which was crucial to getting the argument started. For using

(
Φs

′′

Φs
′

)′
= SΦs +

1

2

(
Φs

′′

Φs
′

)2

,

it follows from the normalization Φs
′′(0) = 0 that

(
Φs

′′

Φs
′

)′
(0) = SΦs(0) = −2(s2 − 1) < 0.
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We used the Koebe function mostly for sentimental reasons. Also, the proof actually gives a
more general result, namely that we can change the qualifiers and allow r and s to depend
on the subinterval J . We have not been able to make any particular use of the stronger
versions.

As a consequence of the preceding work we can now prove:

Theorem 4 Let f : I → R be a non-constant, increasing function. Suppose there are
numbers 0 < r ≤ 1 and 1 ≤ s < ∞ such that for every open subinterval J ⊆ I

dFr(J)(Fr(x), Fr(y)) ≤ df(J)(f(x), f(y)) ≤ dGs(J)(Gs(x), Gs(y)) (4.24)

for all x, y ∈ J . Then f ∈ Cloc
2,1(I) and

SGs ≤ Sf ≤ SFr. (4.25)

Conversely, if f ∈ Cloc
2,1(I) and (4.25) holds then so does (4.24).

Note that we are not assuming that f is normalized. We can also add that if equality
holds in (4.24), in either inequality, for a single pair of points x, y on a given interval J , then
f is the corresponding extremal on J up to a Möbius transformation of J . For if, say,

dFr(J)(Fr(x), Fr(y)) = df(J)(f(x), f(y)),

then we find that
dFr(J)(Fr(x), Fr(z)) = df(J)(f(x), f(z))

for all x ≤ z ≤ y. This implies that equality holds at x at the infinitessimal level, and hence
f = Fr on J up to a Möbius transformation by Corollary 1.

Proof. Again it is more convenient to work with the rescaled extremals, so we suppose
first that f satisfies (4.24) with Φr, Φs in place of Fr, Gs. Then using (4.17) the map
g = fΦs

−1 = fΦ1/s satisfies

dΦr/s(J)(Φr/s(x), Φr/s(y)) ≤ dg(J)(g(x), g(y)) ≤ dJ(x, y).

By Lemma 5 the function g ∈ Cloc
2,1(I) with Sg ≥ 0. Hence f ∈ Cloc

2,1(I) as well, and by the
chain rule for the Schwarzian, (1.3), Sf ≥ SΦs = SGs. Similarly, by forming h = fΦ−1

r and
applying Corollary 3 we get that Sf ≤ SFr.

The converse, in infinitessimal form, has already appeared as Corollary 1. This completes
the proof.

Combining Theorems 2 and 4 we see that a normalized function satisfying the inequalities
(4.24) is quasisymmetric with constant provided by Theorem 2. This seems to be difficult
to show, with any constant, without going through the Schwarzian.

One would expect a compactness result to go along with the regularity theorem above.
Let S(r, s) be the set of increasing, Cloc

2,1 functions f on I with SGs ≤ Sf ≤ SFr and let
SN (r, s) be the subset of S(r, s) of normalized functions. The topology we use on Cloc

2,1(I),
and on S(r, s), SN (r, s) is the metric space topology on C2(I) and the weak∗ topology on
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Lloc
∞ (I). We recall that the former comes from the family of seminorms for an exhaustion of

I by compact sets (the sup norms of f , f ′, f ′′ on compact sets), and the latter (measuring
the local Lipschitz constants by the L∞ norm of f ′′′ on compact sets) amounts to saying that
gn → g, weak∗, if ∫

I
gnφ →

∫

I
gφ

for all φ ∈ L1(I) of compact support. See, e.g. [13].

Theorem 5 Let 0 < r ≤ 1, 1 ≤ s < ∞. SN (r, s) is compact in Cloc
2,1(I). Let {fn} be a

sequence S(r, s) and suppose that the sequence {fn(0)} converges and that for some point
p 6= 0 that the sequence {fn(p)} is bounded. Then a subsequence of {fn} converges in the
Cloc

2,1 topology to a function f which is either constant or an element of S(r, s). Under the
stronger assumption that {fn} converges locally uniformly on I to a function f we have that
either f is constant or that f ∈ S(r, s) and the full sequence {fn} converges in Cloc

2,1 to f .

Proof. To save notation, anytime we pass from a sequence to a subsequence, which we shall
have to do several times, we will use the same indices for each. Let {fn} be a sequence in
SN (r, s). From the inequalities (2.4)–(2.6) derived from the comparison theorem, we get
uniform bounds for |fn| and uniform bounds above and below for fn

′ on any compact set.
Hence from the Arzela-Ascoli theorem there is a subsequence and a function f ∈ C0(I) with
fn → f locally uniformly on I. Now note that with the bounds for fn

′ we see as in the
proof of Lemma 1, (3.8), (3.9), (3.12), (3.13), (3.14), that we also get local uniform bounds
for |fn

′′/fn
′| and therefore for |fn

′′|. Hence for another subsequence fn
′ → f ′. In particular

f(0) = 0 and f ′(0) = 1. The limit function f ′ is subject to the same locally uniform, upper
and lower bounds as the fn

′, and hence is a non-constant, increasing function on I. From
Theorem 4, the functions fn all satisfy (4.24) and therefore so too does the limit function
f . The same Theorem then implies that f ∈ Cloc

2,1(I) with SGs ≤ Sf ≤ SFr, so already we
know that f ∈ S(r, s).

We want to get convergence in the full topology and the normalization for the second
derivative. For this, with SGs ≤ Sfn ≤ SFr and the above, we also have local uniform
bounds for the L∞ norm of fn

′′′. Passing to another subsequence we then get fn
′′ → f ′′

locally uniformly, and pruning further still we obtain a weak∗ convergent subsequence of
the third derivatives with fn

′′′ → f ′′′, weak∗, by the Banach-Alaoglu theorem applied on
the compact sets in an exhaustion of I. Finally, f ′′(0) = 0 from the convergence of the
second derivatives. Hence SN (r, s) is compact in the Cloc

2,1 topology. (With a little more
involved argument it is actually possible to circumvent the use of Theorem 4 in the proof of
compactness, but it is not as natural.)

For the second part of the Theorem, let {fn} be a sequence in S(r, s) and assume that
fn(0) converges and that {fn(p)} is bounded. By working with fn − fn(0) we may also
assume that all fn(0) = 0. Let

fn
′(0) = bn > 0,

1

2

fn
′′

fn
′ (0) = cn.
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Note that since SGs ≤ Sfn, it follows from (2.13) that the cn are all ≤ s in absolute value.
Form the normalized sequence

fn
† =

fn

bn + cnfn

,

(
fn =

bnfn
†

1− cnfn
†

)
, (4.26)

in SN (r, s).
First, we claim that for each compact set K there is a d > 0 so that 1 − cnfn

†(x) ≥ d
for all x ∈ K. Certainly 1 − cnfn

†(x) > 0 for all x ∈ I because it is equal to 1 at x = 0
and fn and fn

† have the same sign. If the claim is false then there is a compact set K,
a sequence of points {xn} in K converging to a point x0 6= 0 in K, and a subsequence
(same notation) with 1 − cnfn

†(xn) → 0. Since the cn are bounded we may also extract a
convergent subsequence, say cn → c. Now, the fn

† are in SN (r, s) which is compact, so with
one more subsequence we can obtain 1 − cnfn

† → 1 − cg, in Cloc
2,1, for a g ∈ SN (r, s), with

1− cnfn
†(xn) → 1− cg(x0) = 0. So c 6= 0, and since g is increasing we can take an x to the

left or right of x0, depending on the sign of c, to get 1−cg(x) < −ε < 0. But then eventually
1− cnfn

†(x) < 0 and this is a contradiction.
Next, suppose that some subsequence bn → ∞. Working at the point p, for a suitable

convergent subsequence of the fn
† and the cn we would have from (4.26) that fn

†(p) →
g(p) = 0, since fn(p) is bounded. But p 6= 0 by assumption and g ∈ SN (r, s) vanishes
only at zero. This contradiction shows that the sequence of derivatives bn = fn

′(0) must be
bounded.

If a subsequence bn → 0 then, since 1 − cnfn
† is bounded below away from zero on any

compact set, it follows that fn tends locally uniformly to the constant 0, and in fact in
Cloc

2,1 since the fn
† together with their first, second and third (a.e.) derivatives are locally

uniformly bounded.
Now, suppose a subsequence of the bn has a non-zero limit b. Again we may assume

that a subsequence of the cn converges to c, and a further subsequence of the fn
† converges

in Cloc
2,1, to conclude again from (4.26) that a subsequence of the fn converge in Cloc

2,1 to a
function f . This time f is in S(r, s) with f ′(0) = b and f ′′(0) = 2bc. This settles the first
claims of the ‘near compactness’ of S(r, s).

Finally, consider the stronger assumption that {fn} converges to a function f locally
uniformly on I. We can again assume that all fn(0) = 0 and follow the preceding argument
through. But now we can also deduce, first of all, that the full sequence {bn} must have
a limit. For different accumulation points lead to mutually exclusive conclusions about the
limit function f ; either that f = 0 or that f ′(0) = b > 0. When the limit of the bn is b > 0
then any accumulation point c of the cn gives f ′′(0) = 2bc, so again the cn must also have a
limit.

We now claim that the full sequence {fn} must converge to f in Cloc
2,1. This is clear if

bn → 0, in which case f = 0, for the same reasons as above. If bn → b > 0 then cn → c and
if g is any accumulation point of {fn

†} in Cloc
2,1 then

f =
bg

1− cg
,
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from (4.26). In other words, g is unique, and g = f †. It follows that the full sequence of
the fn

† must be converging in Cloc
2,1 and the same is then true of the fn. This completes the

proof.

Remark 5 One can easily state ‘conformally invariant’ versions of these results. One case we
shall need in the next Section is when f is defined on I = (−R,R). Then λI(x) = R/(R2−x2)
and, referring to Remark 1 in Section 2, Part (a) of Lemma 3 reads

SG̃s ≤ Sf ≤ SF̃r implies

rλI(x) ≤ λf(I)(f(x))f ′(x) ≤ sλI(x). (4.27)

We could also translate the center of the interval, and with corresponding translations of F̃r

and G̃s the statement would look the same.

Remark 6 The inequality (4.12) in the proof of Lemma 4 expresses a distortion of the
cross-ratio

(x1, x2, x3, x4) =
x1 − x3

x1 − x4

x2 − x4

x2 − x3

,

namely,
(f(x), f(y), f(b), f(a)) ≤ (x, y, b, a),

for a < x < y < b. That Lemma dealt with contracting maps (and so with positive
Schwarzian). Other authors have obtained and used similar distortions of the cross-ratio
when Sf < 0, notably Singer in [11], and De Melo and van Strien in [4]. See also the
papers of Sullivan [12] and Guckenheimer [8]. The most general form of the relationship
(4.4) between the Schwarzian and the distortion of cross-ratio is in Ahlfors [1].

Remark 7 These comments are an addendum to Lemma 4 and Corollary 2 on the C1

smoothness of contracting functions. Recall that such a function f has a log convex deriva-
tive, so that f ′′/f ′ is an increasing function with at most a countable number of jump
discontinuities. It is certainly possible for jumps to occur, so whatever extra smoothness
might still follow from the hypotheses one cannot get up to C2. For an example of this we
piece together the Möbius transformations f(x) = x for −1 < x ≤ 0 and f(x) = x/(1 − x)
for 0 ≤ x < 1. Then f ′′(x) jumps by 2 at x = 0. The function is a hyperbolic isometry
on subintervals of (−1, 1) not containing the origin, and it is easy to check that it decreases
hyperbolic distances on all subintervals containing the origin.

It is likely that this sort of construction can be extended to get more jump discontinuities,
but we would like to be able to say more about the properties of contracting functions away
from the jumps. First note that f ′′/f ′ will be absolutely continuous if and only if it has no
jumps and equality holds in (4.14). So, as we remarked at the beginning of Section 2, one
should perhaps not refer to Sf as a ‘weak Schwarzian’ without these latter conditions also
holding. But might it be that a contracting function has f ′′/f ′ absolutely continuous on
the complement of a discrete set of points where it does have positive jumps? We do not
know, but in trying to understand this question we were led to construct ‘virtual Möbius
transformations’. These are C2 functions f with a third derivative a.e., with Sf = 0 wherever
it exists, but with f ′′/f ′ not absolutely continuous. Briefly, the construction goes as follows.
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Let q be a continuous, increasing function on (−1, 1) with supremum ≤ 1/2 and with
q′ = 0 a.e.. It is easy to see that the operator

(Tg)(x) = q(x) +
1

2

∫ x

0
g(t)2 dt

maps the closed unit ball in C0(−1, 1) into itself, and if we restrict functions g ∈ C0(−1, 1)
to [−c, c], 0 < c < 1 it is contracting. We thus get a fixed point for each such compact subset.
The functions agree on their common domains by uniqueness, and thus define a continuous
function h on (−1, 1) such that

h(x) = q(x) +
1

2

∫ x

0
h(t)2 dt .

Then h is a continuous, increasing function with

h′ =
1

2
h2

almost everywhere. Now let f be a solution to f ′′/f ′ = h. Then f is C2, f ′′/f ′ is increasing
but not absolutely continuous, and Sf = 0 a.e.. This completes the construction. Such a
function cannot be a hyperbolic isometry unless it is an honest Möbius transformation (this
follows from invariance of cross-ratio), but we do not know whether it can be contracting in
the hyperbolic metric.

5 Factoring Quasisymmetric Maps via the Schwarzian

In this Section we want to show how one may apply the results of the previous two Sections
to prove that a function satisfying the usual upper and lower bounds on its Schwarzian can be
factored as a compositon of maps whose quasisymmetry quotients are arbitrarily close to one.
Compare the statements to this end in [9] on pages 36 and 89 for quasisymmetric mappings of
the line. That theorem is based on quasiconformal extensions and a decomposition theorem
for quasiconformal maps.

We state the result for normalized functions on (−1, 1).

Theorem 6 Let f be a normalized Cloc
2,1 function with SGs ≤ Sf ≤ SFr on (−1, 1).

Given any ε > 0 there exists a number N depending on ε, r and s, Möbius transformations
T1, . . . , TN−1, and Cloc

2,1 functions h1, . . . , hN such that
(i) f = T1 · · ·TN−1hN · · ·h1 .
(ii) All maps in the composition have quasisymmetry quotients bounded between 1 − ε and
1 + ε on their domains.
One can take N = O(1

ε
log 1

ε
), where the implied constant depends on r and s.

Proof. The proof is an iterative construction. We describe the plan in general terms first.
Let I1 = (−1, 1) and write f1 for f . By solving a differential equation and appealing to
the chain rule for the Schwarzian, we would like to produce a map h1 defined on I1, with
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quasisymmetry quotient close to 1, that will take a fraction of Sf1 away from f1. That
is, for f2 = f1h1

−1 the bounds for Sf2 on I2 = h1(I1) will have improved over those for
Sf1 on I1, meaning that both the upper and lower bounds will have moved closer to zero.
We will have written f = f1 = f2h1 and we can try to repeat the procedure with f2 in
place of f1, and so on. We cannot do this quite so simply. For f2 to replace f1 = f in
the argument it must be a normalized function defined on a centered interval (meaning,
centered at the origin). We can and will make I2 = h1(I1) centered, but h1 and f2 will not
be normalized. We can still bound kh1, but we pay the price of keeping track of a term qh1,
via Lemma 2 in Section 3. Next, it is not f2 = f1h1

−1 that should replace f1 in order to
iterate the construction, but rather it is the normalized function f2

† that we need. The extra
Möbius transformation required to renormalize is the source of the T ′s in the statement of
the Theorem; f = f1 = f2h1 = T1f2

†h1. Again, we pay the price of keeping track of a qT1

along with kf2
†. The choice of N depends on several conditions which will come up in the

course of the proof. We proceed to the details.
To begin with, for the estimates we have to make it is convenient to write

ρ1 = 1− r2, σ1 = s2 − 1.

Thus the main hypothesis is
−2σ1λI1

2 ≤ Sf1 ≤ 2ρ1λI1
2 .

Let g1 be the normalized solution to Sg1 = (1/n)Sf1, where n > 1 is a positive number
depending on ε, r and s to be chosen later. Let a = g1(−1) < 0 < g1(1) = b. In general,
(a, b) will not be centered. If we define h1 by

g1 = h1
† =

h1

1 + a2(h1)h1

, or h1 =
g1

1− a2(h1)g1

, where a2(h1) =
1

2

(
1

b
+

1

a

)
,

then I2 = h1(−1, 1) = h1(I1) will be a bounded, centered interval provided that h1 is regular.
To address this we estimate a2(h1). Using (2.7), (2.8) we have,

1√
1 + σ1/n

≤ b ≤ 1√
1− ρ1/n

−1√
1− ρ1/n

≤ a ≤ −1√
1 + σ1/n

.

It follows that

|a2(h1)| ≤ 1

2
(
√

1 + σ1/n−
√

1− ρ1/n ). (5.1)

Next, because the map g1 satisfies

Sg1(x) ≤ 2ρ1

n

1

(1− x2)2
,

by (2.10) it will not attain the value −1/a2(h1), and hence h1 will be regular, if

|a2(h1)| <
√

1− ρ1/n, i.e., if
√

1 + σ1/n < 3
√

1− ρ1/n. (5.2)
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With a given ρ1 and σ1 this last inequality holds if n > (σ1 + 9ρ1)/8. For this (preliminary)
choice of n we can conclude that h1(I1) is the centered interval I2 = (−R2, R2), where
R2 = 2ab/(a− b). Note that R2 satisfies

√
1− ρ1/n ≤ 1

R2

≤
√

1 + σ1/n . (5.3)

Next, we estimate the quasisymmetry quotient kh1 = (qh1)
−1kg1 by appealing to Theo-

erem 2 for kg1 and to Lemma 2 for qh1. For the latter, it is more convenient to use the
second set of inequlities (3.25) since we have already chosen n in (5.2) so that the hypothesis
‘|a2| < r’ holds. This gives

3
√

1− ρ1/n−
√

1 + σ1/n√
1 + σ1/n +

√
1− ρ1/n

≤ qh1 ≤
√

1 + σ1/n +
√

1− ρ1/n

3
√

1− ρ1/n−
√

1 + σ1/n
. (5.4)

In terms of ρ1 and σ1 the estimate for kg1 from Theorem 2 is complicated to write down.

Recall, however, that it does tend to 1 as, in this case,
√

1− ρ1/n and
√

1 + σ1/n tend to

1, that is, as n → ∞. From this and from (5.4) it is clear that we can make make kh1 lie
between 1± ε for n sufficiently large, and from the explicit bounds it is not too hard to show
that n should be of the order

n = O
(

ρ1 + σ1

ε

)
. (5.5)

We now examine f2 = f1h1
−1 on I2 = h1(I1). From the chain rule for the Schwarzian

(1.3) and the fact that Sh1 = Sg1 = (1/n)Sf1 we compute that

Sf2(y) =
n− 1

n
Sf1(x)

1

h1
′(x)2

, y = h1(x). (5.6)

Now, from Part (a) of Lemma 3, (4.5), in the last Section, we have

(
√

1− ρ1/n )λI1(x) ≤ λI2(h1(x))h1
′(x) ≤ (

√
1 + σ1/n )λI1(x) .

Using this in (5.6) leads to
−2σ2λ

2
I2
≤ Sf2 ≤ 2ρ2λ

2
I2

, (5.7)

where

ρ2 =
n− 1

n− ρ1

ρ1 , σ2 =
n− 1

n + σ1

σ1 . (5.8)

The bounds on the Schwarzian have improved because

ρ2 < ρ1 and σ2 < σ1. (5.9)

Now, f2 is not normalized, but rather f2(0) = 0, f2
′(0) = 1 and f2

′′(0) = −h1
′′(0) =

−2a2(h1). Hence the normalized function is

f2
† =

f2

1− a2(h1)f2

= T1
−1f2 ,
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where T1 is the Möbius transformation

T1(x) =
x

1 + a2(h1)x
.

Since the bounds for Sf2 have improved, f2 does not assume the value 1/a2(h1) and f2
† is

therefore regular on I2. It also satisfies (5.7) because the Schwarzians are the same.
We have now written

f = T1f2
†h1

where f2
† is a normalized function on the centered interval I2 = h1(I1) = (−R2, R2) whose

Schwarzian has the bounds given for Sf2 in (5.7), and where kh1 is between 1 ± ε on I1.
To complete this step of the construction we have to estimate the quasisymmetry quotient
kT1 on f2

†(I2). For this we observe that the identity map is a normalization of T1, that is
id= T1

† = T1/(1−a2(h1)T1), and hence 1 = (qT1)(kT1) from (3.23). We cannot estimate qT1

using Lemma 2 because f2
†(I2) is not necessarily centered. However, we can work directly

with

qT1(x, h) =
1 + a2(h1)(x− h)

1 + a2(h1)(x + h)
. (5.10)

The length of f2
†(I2) is at most 2R2/

√
1− ρ2 from (5.7) and (2.15), (2.16). Also, because

h > 0 and x− h, x + h lie in the interval we see that x± h can contribute up to half this, or
±R2/

√
1− ρ2, to the numerator and denominator. If n is large, R2 is close to 1, from (5.3),

and ρ2 < ρ1 from (5.8) (for any n). Finally, a2(h1) tends to 0, from (5.1). It follows that
for n sufficiently large kT1 lies between 1± ε. In fact, one can show that n should again be
of the size in (5.5). We make a choice of n, of this order, so all the requirements above are
satisfied.

(These last estimates are exactly where we have used the hypothesis that f = f1 is
normalized. If not, but still with f1(0) = 0, f1

′(0) = 1, then we would have f2
′′(0) =

f1
′′(0)−h1

′′(0), so the estimates for kT1 would depend on a2(f1) as well. This is not a major
complication, but in presenting the proof we felt it was easiest to deal with it separately,
after the normalized case was settled.)

We now iterate this construction. There is one thing that changes from the first to
the second step, but not after that. We must apply the versions of the earlier inequalities
et al which are for a general centered interval (−R,R), in the first instance for the interval
(−R2, R2). However, the results as formulated in Remark 1 in Section 2, Remark 2 in Section
3, and Remark 5 in Section 4 are such that this requires no essential modification. Most
helpfully, one sees that the choice of n in the first step works also in the second step and then
in all subsequent steps. This turns out to be so by virtue of the way the bounds improve, as
in (5.7), (5.8), and (5.9).

After j steps we will have written

f = T1 · · ·Tjf
†
j+1hj · · ·h1 . (5.11)

The h′s and T ′s have quasisymmetry quotients bounded by 1± ε, and f †j+1 is a normalized
function on the centered interval Ij+1 = hj(Ij) with

−2σj+1λ
2
Ij+1

≤ Sf †j+1 ≤ 2ρj+1λ
2
Ij+1

, (5.12)
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where

ρj+1 =
n− 1

n− ρj

ρj σj+1 =
n− 1

n + σj

σj . (5.13)

The choice of n is fixed in the first step and is of the order (5.5).
Starting with ρ1, σ1, and n, the maps

ρ 7→ n− 1

n− ρ
ρ , σ 7→ n− 1

n + σ
σ (5.14)

iterate to zero. Hence after finitely many steps, say j + 1 = N in (5.11), the Schwarzian
SfN

† will be so small that fN
† will have quasisymmetry quotient bounded by 1± ε. We can

get rough bounds for N by approximating the maps in (5.14) by linear ones. Using that
n = O((ρ1 + σ1)/ε) one can show that N grows like

N = O
(

1

ε
log

1

ε

)
,

in terms of ε. We put hN = fN
† and stop at this point. This completes the proof of the

Theorem. Naturally, one can formulate the Theorem for a function on an arbitrary bounded
interval.

Recall from Section 3 that a non-normalized function f satisfying the usual bounds
on its Schwarzian will not necessarily be quasisymmetric unless we make the additional
assumption that either it is bounded or that a2 = (1/2)f ′′(0) is small, the latter being a
stronger condition. Under either assumption, say that |f(x)| ≤ c, it is straightforward to
give a corresponding factorization into functions with small quasisymmetry constants. First,
normalize f as always, writing f = V f †, V x = x/(1 − a2x), and factor f † according to the
Theorem. Because kV might be large we break V up into V x = Ṽ mx with

Ṽ x =
x

1− (a2/m)x
,

where we have to choose m to make kṼ small. Let J = f †(−1, 1). Then we have to estimate
kṼ , equivalently qṼ , on J and its sucessive images under iterating Ṽ . As we saw in (5.10)
above, we need to know about the lengths of these intervals. But we can get uniform estimates
for qṼ for each of the Ṽ factors in V exactly because we know that f = Ṽ mf † = V f † is
bounded. We will not go through the calculations, but m can be chosen of the order O(1/ε),
where the constant depends on |a2| and c, to make each kṼ lie between 1± ε.

Finally, one can combine combine Theorem 6 in this Section with the results in the last
Section on expanding and contracting functions to get a nice geometric picture. Suppose f
is a normalized Cloc

2,1 function satisfying SGs ≤ Sf ≤ SFr on I = (−1, 1). Using Theorem 1
we can find a normalized, Cloc

2,1 solution φ to the equation Sφ = max{Sf, 0}. Then Sφ ≥ 0
so φ will be contracting, while ψ = fφ−1, having negative Schwarzian, will be expanding.
This factors f = ψφ as a composition of an expanding and contracting function, and we
would now like to apply Theorem 6 to factor φ and ψ further into maps of small hyperbolic
distortion (and small quasisymmetry quotient). For φ we have the upper and lower bounds
0 ≤ Sφ ≤ SFr so Theorem 6 applies directly. This gives φ = Aφ1 . . . φN , where A is a Möbius
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transformation, which is a hyperbolic isometry, and all the factors φj are contracting because
they all have positive Schwarzians. Furthermore, the Schwarzians are shrinking, so it is clear
we can make each φj as close to a hyperbolic isometry on its domain as we please, possibly
by changing the N . Next, by Lemma 3, Part (a) appplied to φ, we have

rλI(x) ≤ λφ(I)(φ(x))φ′(x),

so using the chain rule (1.3) for the Schwarzian we find that

−2(s2 − 1)

r2
λ2

φ(I) ≤ Sh ≤ 0.

The lower bound for for Sh on φ(I) is worse by the factor 1/r2 than the original lower bound
for Sf on I, but it is still the Schwarzian of an extremal on φ(I). We can then invoke
Theorem 6 to factor ψ as ψ = Bψ1 . . . ψN ′ , where B is Möbius and the ψj are expanding,
but nearly isometries.

6 Constructions

In this Section we prove two theorems which give examples showing some limitations to
what one might hope to be true for the relations between the Schwarzian and quasisymme-
try. For instance, though a small Schwarzian implies a small quasisymmetry constant, the
converse does not hold.

Theorem 7 There is a smooth, bi-Lipschitz function f on (−1, 1) with Sf ≥ 0 and sup(1−
x2)2Sf(x) = ∞.

Proof. Once again we consider the initial value problem

u′′ + pu = 0, u(0) = 1, u′(0) = 0 (6.1)

on (−1, 1). We will construct a smooth, non-negative function p so that

1

2
≤ u ≤ 1, and (6.2)

sup(1− x2)2p(x) = ∞. (6.3)

Then
f(x) =

∫ x

0
u−2(t) dt

satisfies 1 ≤ f ′ ≤ 4, so it is bi-Lipschitz, and sup(1− x2)2Sf(x) = sup(1− x2)2p(x) = ∞.
First, let p be identically zero on (−1, 0]. Let (an, bn) be a sequence of disjoint intervals

in (0, 1) with an < bn < an+1 < . . . and bn → 1. Let ϕn be a non-negative, smooth cut-off
function with maximum 1 and with compact support in (an, bn). On each interval (an, bn)
we set

p =
nϕn(x)

(1− x2)2
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and let p be zero elsewhere on (0, 1). The initial value problem (6.1) then makes sense. The
condition (6.3) is satisfied, as is u ≤ 1 because p ≥ 0 and so u is concave down on [0, 1).

We want to see that the intervals (an, bn) can be chosen inductively so that for each n

u(bn) >
1

2
+

1

4n
, (6.4)

u′(bn) > − 1

4n

1

1− bn

. (6.5)

This means the following. Notice that u is affine in between the consecutive intervals (an, bn).
These conditions on u at the endpoints bn provide that the prolongation of any such straight
line segment in the graph of u intersects the line x = 1 above 1/2. Then both inequalities
in (6.2) will hold and the construction will be complete.

For this, note that

u′(an) ≥ u′(bn) = u′(an) +
∫ bn

an

u′′(x) dx = u′(an)− n
∫ bn

an

ϕn(x)

(1− x2)2
dx

≥ u′(an)− n
∫ bn

an

dx

(1− x2)2
≥ u′(an)− n(bn − an)

(1− an)(1− bn)
.

We can choose bn − an to tend to zero so rapidly that the last term tends to zero, and
so u′(an) (= u′(bn−1)) and u′(bn) are then also so close that we can satisfy (6.4) and (6.5)
inductively.

This completes the proof of the theorem. We remark that we chose the lower bound
u ≥ 1/2 and the other numbers only to be definite. The construction can be modified to
produce an f with 1 ≤ f ′ ≤ 1 + ε and sup(1− x2)2Sf(x) = ∞ for any ε > 0.

Finally, experience may indicate that a negative Schwarzian is a good property for qua-
sisymmetry, but the next result shows that one still needs a finite lower bound.

Theorem 8 There is a smooth function f which is not quasisymmetric on (−1, 1), with
Sf ≤ 0 and inf(1− x2)2Sf(x) = −∞.

Proof. The construction is again based on the initial value problem (6.1). Let (an, bn) be
a sequence of disjoint intervals in (0, 1) with an < bn < an+1 < . . . and bn → 1 and with
the additional property that δn = bn − an < an − bn−1. Again we start by setting p = 0 on
(−1, 0]. This time we want to inductively define the function p on (−1, 1) so that: (i) p ≤ 0
on (0, 1) and is supported in the union of the (an, bn), and, (ii) if

f(x) =
∫ x

0
u−2(x) dx ,

then given f(an)− f(an − δn), p is defined on (an, bn) in such a way that

kn =
f(bn)− f(an)

f(an)− f(an − δn)
<

1

n
. (6.6)

Condition (ii) makes sense inductively because u is affine off each [an, bn]. To show that this
is possible we need a lemma.
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Lemma 6 Let x0 ∈ (0, 1), let c be a positive constant and let v be a solution of

v′′ − c

(1− x2)2
v = 0, v(x0) > 0, v′(x0) ≥ 0 .

Then given ε > 0, δ > 0 there exists c0 > 0 such that

∫ x0+δ

x0

v−2(s) ds < ε

for all c ≥ c0.

Proof of Lemma 6. It is clear that v(x) ≥ v(x0) for x ≥ x0. Write

v(x) = v(x0) +
∫ x

x0

v′(s) ds = v(x0) +
∫ x

x0

{
v′(x0) +

∫ s

x0

v′′(t) dt
}

ds

≥ v(x0) +
∫ x

x0

∫ s

x0

cv(t)

(1− t2)2
dt ds

≥ v(x0)

{
1 + c

∫ x

x0

∫ s

x0

1

(1− t2)2
dt ds

}
.

This shows that given µ > 0, v(x) tends uniformly to ∞ as c → ∞ for x ≥ x0 + µ. Hence,
given ε > 0, δ > 0 choose µ > 0 small enough so that

∫ x0+µ

x0

v−2(s) ds < ε/2 ,

and then c0 large enough so that for c ≥ c0,

∫ x0+δ

x0+µ
v−2(s) ds < ε/2 .

This completes the proof of the Lemma.
Returning now to the proof of the Theorem, on the interval (an, bn) we let

p(x) = − cnϕn(x)

(1− x2)2
,

where ϕn is a smooth cut-off function on (an, bn) as in the proof of the preceding Theorem. It
follows from the Lemma above, more accurately its proof, that given the difference f(an)−
f(an − δn) there is a constant cn > 0 sufficiently large, and a cut-off function ϕn such that

f(bn)− f(an) =
∫ bn

an

u−2(s) ds <
1

n
(f(an)− f(an − δn)).

This construction defines the function p, hence f , on (−1, 1). We have Sf ≤ 0, inf(1 −
x2)2p(x) = inf(1− x2)2Sf(x) = −∞, and inf kf(x, h) = 0.
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